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My research interests lie at the intersection of Statistics and Artificial Intelligence (AI),
with the goal of advancing the theoretical understanding of AI and developing theory-inspired algo-
rithms. I am particularly interested in Statistical Machine Learning, Trustworthy AI, Representation
Learning, Deep Generative Models, and Large Language Models (LLMs).

AI is taking the world by storm. From vanilla neural networks to transformers, from supervised
learning to generative modeling, numerous empirical studies have demonstrated remarkable capabil-
ities in handling increasingly complex tasks. However, much of this progress is driven by empirical,
trial-and-error methods, especially in the LLM era. This reliance on heuristics has led to two sig-
nificant challenges: (1) the resulting models often function as black boxes, lacking robustness and
trustworthiness; (2) as models grow in size and complexity, empirical validation becomes increasingly
difficult and resource-intensive. These challenges underscore the need for a theory-driven approach to
AI development. With seamless cooperation between theory and practice, and collaboration across
academia and industry, AI can advance in a more sustainable way. To this end, my research seeks to
bridge the gap between theory and practice by formulating new theoretical problems from practical
challenges and rigorously investigating them. This results in a deeper theoretical understanding of
AI and the development of practically impactful, theory-inspired algorithms. My research follows
three interconnected directions, each contributing progressively to AI advancement.
Statistical Foundations of Deep Learning
The starting point of my research is contributing to the statistical foundation of deep learning,
with the goal of providing statistical guarantees for the empirical performance of deep learning, e.g.,
whether they can achieve the optimal convergence rate and circumvent the curse of dimensionality. I
began investigating in this direction right after the seminal works of Schmidt-Hieber [1], which first
showed that ReLU neural networks can achieve optimal convergence rates in the classical smooth
regression setting. I extended this line of work to classification and derived the first minimax-optimal
convergence rates for deep neural network (DNN) classifiers under traditional smooth boundary
settings [2] and a novel teacher-student setting [3]. In both cases, DNN classifiers are shown to
be statistically optimal while adapting to underlying low-dimensional structures to circumvent the
curse of dimensionality. Key technical contributions include deriving complexity bounds for DNN
classifiers and adapting existing empirical process bounds to neural networks, whose covering number
is always in the logarithmic order but with network-size-dependent constants. Following [3], I further
developed the concept of boundary complexity to better characterize the classifier robustness [4].

Inspired by the seminal work of Neural Tangent Kernel [5], I later extended previous statistical
analysis to incorporate the optimization process of neural networks, deriving the first convergence re-
sults for overparameterized ReLU networks trained with gradient descent and weight decay, both in
regression and classification settings [6, 7]. Motivated by data augmentation in contrastive learning,
collaborators and I introduced random smoothing in kernel gradient descent and derived optimal con-
vergence rates that adapt to various low-dimensional data assumptions [8]. These contributions form
a solid statistical foundation for understanding neural networks, serving as the basis for subsequent
investigations.
Representation Learning
Reassured that basic AI models can be statistically optimal, I took a deeper look into the repre-
sentation learning process, aiming to uncover what features the models learned, how they depend
on the training data, and how to utilize them for downstream tasks. As a statistician, the first
question is how to characterize the optimal feature in various learning tasks. With the blooming of
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self-supervised representation learning, I derived a unified view of representation learning from the
perspective of preserving the distance between distributions across different dimensions [9, 10]. Such
a measure is non-trivial due to the dimension disparity. Existing work has primarily two remedies:
considering pairwise relationships such as Gromov-Wasserstein distance or aligning dimensions by
projection or embedding. Interestingly, they correspond to contrastive learning [9] and latent space
generative modeling [10] respectively. With this enhanced understanding, I developed new methods
to utilize learned features more effectively in downstream tasks. This direction also extends to the
concept of the “model zoo”, involving the transfer of knowledge from pretrained models to various
downstream applications. Collaborators and I demonstrated the efficacy of tweaking features and
utilizing pretrained models in out-of-distribution classification [11, 12, 13, 14, 15] as well as vision
generation [16, 17, 18, 19, 20]. This is a prime example of the theory-practice cycle in action, where
theoretical insights guide the design of more effective learning paradigms.
Generative Modeling
Generative modeling is a natural and important extension of previous supervised and self-supervised
learning scenarios. After gaining insights into representation learning, I expanded my research to
generative models, focusing on three key aspects of artificial intelligence generated content (AIGC).
Modeling efficiency Data such as images often reside in ultra-high dimensions, making direct
modeling computationally inefficient. Numerous successful approaches leverage a low-dimensional
latent space induced by an encoder and generate images through a paired decoder. While the
selection of the latent space is empirically pivotal, determining the optimal choice remains unclear.
My formulation of representation learning as preserving the distance between distributions naturally
provides a characterization for the optimal latent space, in the sense that it will minimize the required
model complexity [10]. This line of work is later extended in [21].
Sampling efficiency Diffusion models are dominant in AIGC, but sampling typically requires
dozens of score function evaluations (NFEs), which is time-consuming. By examining the score
network architecture and the sampling time schedule, collaborators and I proposed two training-
free methods that significantly improve sampling efficiency [22, 23], reducing the cost to under 10
NFEs. To achieve extreme sampling acceleration, we further investigated training-based methods
that distill a diffusion model to a single-step GAN-style generator. Viewing diffusion distillation as
a sampling from an un-normalized density problem, collaborators and I extended my previous Stein
Neural Sampler [24] and proposed Diff-Instruct [16], a universal approach for transferring knowledge
from pre-trained diffusion models, which is theoretically grounded in minimizing a novel distance
termed Integral KL divergence. The one-step sampling performance was further strengthened by
incorporating adversarial training [25].
Controllability Ensuring adherence to given conditions is another significant challenge in AIGC.
As the conditions get stronger, the paradigm gradually shifts from sampling to regression. Collabo-
rators and I elucidated the design space of conditional generation across a wide range of scenarios.
Based on my prior work on understanding trained classifiers [7], we demonstrated the key role of
classifier calibration on noisy images and proposed several theory-inspired modifications that signif-
icantly outperformed existing guidance methods [17]. Such a training-free guidance method with
off-the-shelf pretrained classifiers was also applied to 3D generation [20]. For text-to-image gener-
ation, we took a step further, showing that conditional generation with strong conditions can be
reformulated as a model inversion problem. By inverting discriminative models (e.g., classifiers), we
can achieve better text-image alignment while maintaining competitive sample quality [18]. This
direction represents the culmination of my efforts to extend theoretical findings to more complex
and practical AI scenarios.
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Future Work
In my future work, I plan to continue advancing the theoretical understanding of AI and developing
theory-inspired new algorithms, with a special focus on LLMs. Despite the unprecedented progress
of LLMs and AGI, this emerging area is where the mismatch between theory and practice is the
most severe and could benefit the most from rigorous formulations and theoretical understanding.
My goal is to contribute to a theory-inspired next-generation LLM that is statistically optimal with
explainable learning mechanisms.
Statistical estimation of algorithms The new era of AGI poses new challenges for the statistical
understanding of LLMs. Beyond traditional machine learning, where the object to learn is some
simple function (e.g., decision boundary in classification) and the data are usually independent and
identically distributed, LLMs handle sequential data and can learn to implement algorithms and
handle logical tasks. Our earlier work showed that transformers with enough layers can implement
various non-trivial algorithms [26]. However, a statistical foundation is yet to be built. To this end,
I formulate a toy case reminiscent of deductive reasoning based on Directed Acyclic Graphs (DAGs),
where each edge represents a deductive logic [27]. The estimation target is inherently an algorithm,
and the task difficulty can be conveniently characterized by the DAG size. In this well-defined setting,
I aim to (1) establish the optimal statistical learning efficiency (lower bound), particularly how the
sample complexity depends on DAG size – an exponential dependence would indicate fundamental
limitations in the long-chain reasoning ability of current LLMs; (2) analyze the model learning
efficiency (upper bound) to determine whether next-token prediction can be statistically optimal and
ways to improve sample efficiency. The aforementioned investigations from the angle of statistical
analysis provide not only theoretical reassurance beyond empirical performance, but also practical
guidelines, such as the optimal data format (augmentations), and test-time scaling laws, among
others.
Duality between prompt and LLM weights Both in-context learning (ICL) and fine-tuning
can significantly alter model behavior, but their relationship remains underexplored. My recent work
[28] has shown that prompts can equivalently be viewed as query-dependent logit biases in each at-
tention layer, which provides significant insights into understanding how prompts guide LLMs in
next-token prediction. A key component in the proposed prompt-to-weight conversion method is
attention kernel semi-linearization, a novel approximation setting where half the input, i.e., keys,
are given and fixed. This formulation opens new research directions: (1) ICL-guided fine-tuning: a
more scalable, permanent solution than ICL, while being more robust and lightweight compared to
traditional fine-tuning, improving “plasticity” of LLMs. [29]. (2) New LLM architectures: incorpo-
rating recurrent memory into the attention mechanism through logit biases that specifically handle
long-term and common knowledge, promoting pre-training efficiency and explainability. These di-
rections help us better understand the duality between data and model weights and contribute to a
more transparent LLM learning process.
Broader Impact Impactful advancements in AI require a synergistic partnership between engi-
neering and scientific disciplines, e.g., mathematics, statistics, and computer science. My unique
combination of academic and industrial experiences positions me well to conduct a theory-driven
approach to practical improvement. I am eager to collaborate with faculty across disciplines and
industry partners, exploring new research directions and formulating new problems to study. My
research aims to advance theoretical foundations while addressing real-world challenges, ensuring
AI systems are robust, transparent, and trustworthy. These contributions have the potential to
make AI more reliable and effective across sectors like healthcare, finance, and autonomous systems,
fostering a collaborative effort between academia and industry for advancing AI.
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