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Deep Learning

Deep learning has great empirical success.

 

But theoretical understanding and guidance are still lacking. 
Figure from https://xkcd.com/1838/ 

OpenAI DALLE-2 OpenAI GPT-4 technical report

Multi-Modal CLIP doing classification



Deep Learning Theory
Why models built with neural networks can handle large-scale, high dimensional data extremely well? 

Is this the whole story? Does Statistics play a big role in it? 



Deep Learning Theory – A Statistics Perspective

For a certain task:
• What is the estimation problem and what are the most appropriate ground truth assumptions?
• What is the best we can do (optimal sample complexity)? Does the curse of dimensionality occur?
• Can DNNs achieve the best performance (statistical optimality)? Is there algorithmic guarantees?

Why is Statistical Optimality Important?
• It can produce sharp characterization of the estimation method.
• It offers fair comparison between different models.
• It complements the other research areas revolving DNNs.

It’s underexplored in the current mainstream research areas

Viewing DNN as a estimation tool, can they achieve statistical optimal rates in typical tasks, specifically 
classification?
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Classical DNN classifiers New Results

• Understanding Square Loss in Training Overparameterized Neural Network Classifiers, NeurIPS 2022 Spotlight, with Wenjia Wang, Jun Wang, Zhenguo Li

• Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary, arXiv, with Ruiqi Liu, Zuofeng Shang, Guang Cheng

• Exact Count of Boundary Pieces of ReLU Classifiers:Towards the Proper Complexity Measure for Classification, UAI 2023, with Pawel Piwek, Adam Klukowski
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Binary Classification – Basic Settings



Binary Classification – Basic Settings

Complexity: covering number, smoothness, etc.

Separation: margin condition, 
Tsybakov’s noise condition, etc.



Binary Classification – Complexity Assumptions

Complexity of the classification problem: Conditional probability vs. Decision Boundary

Audibert & Tsybakov, Fast Learning Rate for Plug-in Classifiers, Annals of Statistics 2007



Binary Classification – Separation Assumptions

Tsybakov’s noise condition with noise exponent � 표� �:

Separated with positive margin �  



Existing Results

With Tsybakov’s noise condition:

(CAR) On the Conditional Probability: 

Assume � to be �-smooth (Hölder)

(CAD) On the Decision Boundary:

Under the smooth boundary fragment 

assumption with smoothness � 

DNN classifiers

Optimal up to a 
log term

Sub-optimal 
w.r.t. �



CAR-NN: Fast Rates with Algorithmic Guarantee 
Overview of Results:

Overparametrized ReLU network trained with square loss + gradient descent + weight decay

•Convergence：Derived fast convergence rates;

•Robustness：When classes are separable, square loss has (adversarial) robustness guarantee;

•Model Calibration：Square loss is better-calibrated in theory and in experiments

Modified Square Loss for practical training

•Improved label encoding：one-hot  simplex  better performance

"Understanding Square Loss in Training Overparametrized Neural Network Classifiers." NeurIPS 22 Spotlight
Joint work with Wenjia Wang (HKUST), Jun Wang (HKUST), Zhenguo Li (Huawei)



 Not bad in practice

Hui, L., & Belkin, M. (2020). Evaluation of neural architectures trained with 
square loss vs cross-entropy in classification tasks. ICLR 2021.

 Explicit Feature modeling

Wide connections 

mixup 

Knowledge Distillation Contrastive Learning

Zhang, Hongyi, et al. “mixup: Beyond empirical 
risk minimization.” ICLR 2018.

Hinton, Vinyals, and Dean. "Distilling the 
knowledge in a neural network.“ NIPS 2015

Khosla, Prannay, et al. "Supervised contrastive 
learning." NIPS 2020.

CAR-NN: Why Square Loss?



Zhang, Chiyuan, et al. “Understanding deep learning requires rethinking generalization.”
Neyshabur, Behnam, et al. "The role of over-parametrization in generalization of neural networks."

Model：Overparametrized ReLU Network 
(in the Neural Tangent Kernel regime)

Training Objective：Square Loss  

 

Training Algorithm：Gradient Descent + 
weight decay (L2 penalty) + early stopping

Interests：
• Accuracy: 0-1 loss excess risk 

convergence rate
• Robustness: margin when separable
• Model Calibration: estimation of � � 

 Why Overparametrization?
• Over-parametrization is universal in DL
• It helps with optimization and also generalization

• Overparametrization networks has a solid theory --- NTK

         Optimization              Generalization          Convergence Rate

Arora, et al. "Fine-grained analysis of optimization and generalization for overparameterized two-layer neural 
networks." ICML 2019.
Hu, et al. "Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network." AISTATS 2021.

CAR-NN: Model Setup



T. Hu, W Wang, C Lin, G. Cheng, Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network, AISTATS 2021

Data assumption
 The ground-truth η(x)  to be well-behaved (Assumption D.2)
 The marginal density of x is assumed to be upper bounded (Assumptions D.4) or both upper 

and lower bounded (Assumptions D.5)
 Assumption D.2 ensures the problem is not mis-specified.

Model assumption
 The ReLU neural network  is to be sufficiently overparameterized (with a finite width) plus 

some regularity conditions on the GD algorithm (Assumption D.1)
 The complexity of the neural network estimator generated by the GD training is controlled 

(Assumption D.3)
 Under these assumptions, NN behaves like kernel ridge regression with NTK 

Cases Considered:
 General non-separable case
 Separable case with positive margin

CAR-NN: Assumptions



• The bigger the � ，the faster the rate (can be faster than 1/ �)
• Under Assumption D.2+D.4，the optimal rate [1] is hypothesized to be                            
• Our rate has an extra  d − 1 � term in the denominator

• In another work [2]，the rate from plug-in kernel estimate is                         , which is slower than 
ours

• No similar results for NN classifiers under cross-entropy

General non-separable case, fast convergence rate

[1] Audibert and Tsybakov. Fast learning rates for plug-in classifiers. The Annals of Statistics, 2007.
[2] Kohler and Krzyzak. On the rate of convergence of local averaging plug-in classification rules under a margin condition. IEEE Transactions on Information Theory, 
2007. 

CAR-NN: Convergence Rate in the General Case



Separable case with positive margin, super fast convergence rate

CAR-NN: Convergence Rate in the Separable Case



Square loss is not inferior to cross entropy，could be even better!

Hui, L., & Belkin, M. Evaluation of neural architectures trained with square loss vs cross-entropy in classification tasks. ICLR 
2021.

A trick for multi-class classification

Why square loss struggles when the number of classes is large？

CAR-NN: Label Coding for Multi-Class



Modify label encoding from one-hot  simplex

Experiments：ResNet-18 on CIFAR-10 +0.5%, ResNet-50 onCIFAR-100 +6%

Coincides with Supervised Contrastive Learning (Khosla, Prannay, et al. ):
          

CAR-NN: Modified Label Coding for Multi-Class



When separable with positive margin, square loss has (adversarial) robustness guarantee 

Measurement：size of the empirical margin

• The GD implicit bias under CE is maximize training margin
• The margin in our theorem is on the population level

Lyu, Kaifeng, and Jian Li. "Gradient Descent Maximizes the Margin of Homogeneous Neural Networks." ICLR 2019.

CAR-NN: Robustness in the Separable Case



Performance on CIFAR-10 dataset for ResNet-18 
under standard PGD adversarial training.

CAR-NN: Numerical Experiments - Accuracy and Robustness



Square loss is better-calibrated in theory and in experiments

Measurement: expected calibration error, or   � − �  ∞

Experiments:

Square Loss:     
� =  �� + 1 /2

Cross Entropy: 
� = ���/(1 + ���)

CAR-NN: Model Calibration
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Classical DNN classifiers New Results

• Understanding Square Loss in Training Overparameterized Neural Network Classifiers, NeurIPS 2022 Spotlight, with Wenjia Wang, Jun Wang, Zhenguo Li

• Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary, arXiv, with Ruiqi Liu, Zuofeng Shang, Guang Cheng

• Exact Count of Boundary Pieces of ReLU Classifiers:Towards the Proper Complexity Measure for Classification, UAI 2023, with Pawel Piwek, Adam Klukowski



CAD-NN: Recap

(CAD) On the Decision Boundary:

Under the smooth boundary fragment assumption 

with smoothness � 

Smooth Boundary Fragment: Function as boundary

Other ways: By ReLU network

DNN classifiers

Sub-optimal 
w.r.t. �

T. Hu, Z. Shang, G. Cheng, Sharp Rate of Convergence for Deep Neural Network Classifiers Under the Teacher-Student Setting



CAD-NN: Source of Sub-optimality

Inconsistency of � along the decision boundary

Decomposition of the excess risk:

��푐��� �푖�� ≈  푎���표� ���표� 1+1/� +  �푡표푐ℎ푎�푡푖푐 ���표� 1−
1

�+2 

Matches the lower bound!



Localized Tsybakov’s noise condition

2D Example: Let � ∈  0,1 2 be uniformly distributed, i.e., � � + � � ≡ 2.

Decision boundary: �2 = �∗ �1 = 1
4
 cos  6��1 + 1

2
. Let � � = 4

3
 �2 − �∗ �1  , which ranges from -1 to 1. 

By setting                                                               will allow us to specify K(x) freely.

CAD-NN: Localized Analysis

�
�

1

�



CAD-NN: Localized Analysis

Localized Tsybakov’s noise condition



CAD-NN: Localized Analysis

Localized Convergence Analysis

If �+ = �−, optimal rate!
If �+ = ∞, recovers existing fast rate



CAD-NN: Divide-and-Conquer

Global Convergence Analysis



CAD-NN: Curse-of-Dimensionality

Compositional Smoothness Structure: Effective smoothness �∗ and effective dimension �∗



CAD-NN: Simulation

Recall the 2D example, where k governs the inconsistency. 



In learning theory, the model complexity (how large is the model) is of critical importance, especially for 
model generalization.

However, for classification, existing regularizations may be insufficient or irrelevant.

In classification, to achieve good generalization, the complexity to control:
 

Model 
Complexity

regularizeBag of 
Tricks

Good 
Generalization

  
ensure

Boundary Complexity
  �: � � ≥ � : � ∈ � 

Classifier 
 � � : � ∈ � 

• The boundary complexity measurement is far less explored, classical notions e.g., covering number, 
may be inadequate for deep learning. 

• Given a boundary complexity, regularizing it during neural network training can be challenging. 
Adversarial training can be thought of as a regularization for boundary complexity

CAD-NN: Boundary Complexity



CAD-NN: Boundary Complexity

A (proof-of-concept) step towards this underexplored direction

Consider ReLU neural network, where the decision boundary is piecewise linear!

Boundary complexity can be conveniently characterized by the #Boundary (number of linear pieces). 

 

Pros:

• Well-defined

• Intuitive

• Synergy with #Total (total number of linear pieces) 

Cons:

• Over-simplified

• Not easy to calculate



CAD-NN: Boundary Complexity

A (proof-of-concept) step towards this underexplored direction: We propose a method to explicitly 

count the number of boundary pieces, with the help of Tropical Geometry. 

Two take home messages:

• Boundary complexity is different from functional complexity

• Boundary complexity can have negative correlation with Classification Robustness
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Statistics has a lot more to offer for theoretical understanding of deep learning.


