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Deep Learning

Deep learning has great empirical success.

User
guacamole (90.1%) Ranked 1out of 101 labels
v aphoto of guacamole, a type of food.

ceviche

edamame

tuna tartare

hummus

Multi-Modal CLIP doing classification

GPT-4

OpenAl DALLE-2

What is funny about this image? Describe it panel by panel.

Source: https://wuw.reddit.com/r/hmmm/comments/ubabbv/hmmm/

The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-

nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-

nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,

outdated VGA connector into a small, modern smartphone charging port.

OpenAl GPT-4 technical report

But theoretical understanding and guidance are still lacking.

THIS 15 YOUR MACHINE LEARNING SYSTEM?

| YOP! You POUR THE. DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

l
WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Machine Learning in a nutshell

Figure from https://xkcd.com/1838/



Deep Learning Theory

Why models built with neural networks can handle large-scale, high dimensional data extremely well?

How Deep

Expressibility

Models work?

AN

Universal approximation theorem
Deep neural network vs shallow neural network
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Optimization

Gradient vanishing / exploding

GD can get stuck at saddle point.
Whether / how GD / SGD finds global optima?

P capacity

Generalization

Generalization error bound based on Rademacher complexity
Does overparametrization hurt generalization?

Is this the whole story? Does Statistics play a big role in it?



Deep Learning Theory — A Statistics Perspective

For a certain task:
- What is the estimation problem and what are the most appropriate ground truth assumptions?
- What is the best we can do (optimal sample complexity)? Does the curse of dimensionality occur?

- Can DNNSs achieve the best performance (statistical optimality)? |s there algorithmic guarantees?

Why is Statistical Optimality Important?
» |t can produce sharp characterization of the estimation method.
- |t offers fair comparison between different models.

* |t complements the other research areas revolving DNNs.
It’s underexplored in the current mainstream research areas

Viewing DNN as a estimation tool, can they achieve statistical optimal rates in typical tasks, specifically

classification?
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» Understanding Square Loss in Training Overparameterized Neural Network Classifiers, NeurlPS 2022 Spotlight, with Wenjia Wang, Jun Wang, Zhenguo Li
* Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary, arXiv, with Ruiqi Liu, Zuofeng Shang, Guang Cheng

« Exact Count of Boundary Pieces of RelLU Classifiers:Towards the Proper Complexity Measure for Classification, UAI 2023, with Pawel Piwek, Adam Klukowski



Binary Classification — Basic Settings

Droba

et x € R?and y € {—1,1} be the labels. Assume equal class

bilities and x|y = 1 ~ p(x), X|y = —1 ~ g(x). Observe data

{(x1,¥1) -+ . (Xn, ¥n)}-

- The optimal classifier C* := argminc.¢ E [1{C(X) # y}] can be
written as the sign of (p — q).

- Empirical minimization of 0-1 loss with I1s NP-hard, so surrogate
loss 1s usually used in practice.

- D

NN classifiers f: R? — R can be trained using surrogate [0ss ¢

(hinge loss ¢(z) = max{0,1 — z}, cross entropy, etc.) by

N

min > olyif(x)).

—

Conditional Probability:
B B - p(x)
nx) =Py = 1x) =

p(x) + q(x)

Decision Boundary:

|
(xIn00) =2} or {x| p(x) = q(x)}

Optimal Classifier:
{n(x) >} or {2n(x) — 1> 0}

Excess Risk:

E(f.C*) = R(f) — R(C").
where R(C) denotes the expected
0-1 risk E [1{C(x) # v}].




Binary Classification — Basic Settings

The performance of?ls measured by its excess risk Separation: margin condition,
Tsybakov’s noise condition, etc.

P P

E(f,C7) = R(f) = R(C7),

where R(C) denotes the expected 0-1risk E [1{C(x) # y}].

There are two key factors governing the rate of convergence of the
excess risk:

Complexity: covering number, smoothness, etc. X

Decision

f Boundary ﬁ
|




Binary Classification — Complexity Assumptions

Complexity of the classification problem: Conditional probability vs. Decision Boundary

ASSUMPTION (CAR). The regression function n belongs to the class 2 of
functions on R¥ such that

H(e, X, Ly) < Aye™” Ve > 0,

with some constants p > 0, A, > 0. Here F(¢, 2, L) denotes the g-entropy of
the set X w.r.t. an L, norm with some 1 < p < o0.

ASSUMPTION (CAD). The decision set G* belongs to a class § of subsets
of R? such that

H(e, §,dp) < Aye™ " Ve > 0,

with some constants p > 0, A, > 0. Here # (¢, 4, da) denotes the e-entropy of the
class G w.r.t. the measure of symmetric difference pseudo-distance between sets

defined by da (G, G') = Px(GAG’) for two measurable subsets G and G’ in R¥.

Audibert & Tsybakov, Fast Learning Rate for Plug-in Classifiers, Annals of Statistics 2007



Binary Classification — Separation Assumptions

Tsybakov’s noise condition with noise exponent k or a:

ASSUMPTION (MA). There exist constants Cop > 0 and o > 0 such that

Px(0 < n(X) —1/2| <t) < Cot® Vi > 0. Separated with positive margin y

B L)
F,
.’ L A

(N) There exists C,T > 0 and k € [0,00] such that forany 0 <t < T

Q({x: |p(x) —q(x)| < t}) < Ct™.

Px, (x2) — qx, (x2)

(X1, X2




Existing Results

With Tsybakov’s noise condition: [DNN c|assifiers]

(CAR) On the Conditional Probability:

_ . 4 )
Assume n to be p-smooth (HOlder) Optimal up to a

sup {ER(f,) — R(f*)} > Cn~U+0)B/(Q+a)p+d) _ log term

/!
PePs

(CAD) On the Decision Boundary: " Sub-optimal

Under the smooth boundary fragment . w.r.t.

assumption with smoothness 3
B(x+1)

ﬁ(ﬂ—i—1) K — 1) &
('] ) B(k+2)+(d—1)k 0 (log3 ﬂ) PR e
O — n
[l




CAR-NN: Fast Rates with Algorithmic Guarantee

Overview of Results:

Overparametrized RelLU network trained with square loss + gradient descent + weight decay

* Convergence: Derived fast convergence rates;

* Robustness: When classes are separable, square loss has (adversarial) robustness guarantee;

* Model Calibration: Square loss is better-calibrated in theory and in experiments

Modified Square Loss for practical training

* Improved label encoding: one-hot = simplex = better performance

"Understanding Square Loss in Training Overparametrized Neural Network Classifiers." NeurlPS 22 Spotlight
Joint work with Wenjia Wang (HKUST), Jun Wang (HKUST), Zhenguo Li (Huawei)



CAR-NN: Why Square Loss?

€ Not bad in practice

Table 7: Vision results, accuracy

Table 2: NLP results, accuracy

train with train with
B! o square loss (%) cross-entropy (%)
CNN (Bai et al., 2018) MNIST (acc.) : y7.
W-Resnet (Zagoruyko & Komodakis!2016) CIFAR-10 (acc.) 95.9 96.3
— ResNet-30 ImageNet (acc.) 76.2 76.1
(He et al.|[2016) ImageNet (Top-5 acc.) 03.0 03.0
—ElficientNet ImageNet (acc.) 74.6 77.0
(Tan & Le,2019) ImageNet (Top-5 acc.) 92.7 93.3

Hui, L., & Belkin, M. (2020). Evaluation of neural architectures trained with
square loss vs cross-entropy in classification tasks. ICLR 2021.

& Explicit Feature modeling

€ Wide connections Knowledge Distillation

generating soft targets (Er_,_u S [
TEACHER
> [ : LLH{;J‘JEJW 1 >

MmiIxXup

backpropagation
%

g

training the student

Zhang, Hongyi, et al. “mixup: Beyond empirical Hinton, Vinyals, and Dean. "Distilling the

risk minimization.” ICLR 2018.

train with train with

e e square loss (%) cross-entropy (%)
MRPC 83.8 82.1
BERT - SST-2 94.0 93.9
{]'Deﬂin et aL|, 2018) QNLI 90.6 90.6
QOQP 88.9 58.9
T A
(Chen et al., 2017) Q0P 83.4 23 1
[ STM+CNN MRPC 13.2 69.4
(He & Lin,2016) 2N el Gty
= QQP 84.3 24.4

knowledge in a neural network.“ NIPS 2015

Contrastive Learning

Anchor Negatives

Positives 4

Khosla, Prannay, et al. "Supervised contrastive
learning." NIPS 2020.



CAR-NN: Model Setup

Model: Overparametrized RelLU Network
(in the Neural Tangent Kernel regime)

fwa(x)=m=12Y"  a.0(W, z)

Training Objective: Square Loss
l(fw.a(®i),yi) = (fw,a(®i) — U?)Q

Training Algorithm: Gradient Descent +
weight decay (L2 penalty) + early stopping

x;),yi) + pR(W,a)

111111 Z L fw .al

0
Interests: R(W.a) = ”WHJ

 Accuracy: 0-1 loss excess risk
convergence rate
 Robustness: margin when separable

* Model Calibration: estimation of n(x)

€ Why Overparametrization?
* Over-parametrization is universal in DL
* It helps with optimization and also generalization

ResNetl8 two layer ReLU net
el W 7 e
. 0.10 'F““?“. ___________________ = 0.4- \ i
P e O :
O | | @ l
0.05 \ —+— training error 0.2 - —+— training error
«— test error test error
D{]ﬂ' | OSSP S S — S——— . ‘D.U‘"I . ———— e ——
'lDEl 1DE 23 2? 211 215
#param #hidden units

Zhang, Chiyuan, et al. “Understanding deep learning requires rethinking generalization.”
Neyshabur, Behnam, et al. "The role of over-parametrization in generalization of neural networks."

 Overparametrization networks has a solid theory --- NTK

Optimization Generalization Convergence Rate
B(W(k+1) < (1-52) (W), 2O i, 0)0 - £ = Op(n= 7).

Arora, et al. "Fine-grained analysis of optimization and generalization for overparameterized two-layer neural
networks." ICML 2019.
Hu, et al. "Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network." AISTATS 2021.



CAR-NN: Assumptions

Data assumption
» The ground-truth n(x) to be well-behaved (Assumption D.2)

» The marginal density of x is assumed to be upper bounded (Assumptions D.4) or both upper
and lower bounded (Assumptions D.5)
€ Assumption D.2 ensures the problem is not mis-specified.

Model assumption

» The RelLU neural network is to be sufficiently overparameterized (with a finite width) plus
some regularity conditions on the GD algorithm (Assumption D.1)

» The complexity of the neural network estimator generated by the GD training is controlled
(Assumption D.3)

€ Under these assumptions, NN behaves like kernel ridge regression with NTK

Cases Considered:
» General non-separable case
» Separable case with positive margin

T. Hu, W Wang, C Lin, G. Cheng, Regularization Matters: A Nonparametric Perspective on Overparametrized Neural Network, AISTATS 2021



CAR-NN: Convergence Rate in the General Case

General non-separable case, fast convergence rate

Theorem 3.1 (Excess risk in the non-separable case). Suppose Assumptmns D.1, D.2, and D.4 hold.
Assume the conditional probability n(x) satisfies Tsybakov’s noise condition with component . Let
i == n2a-1. Then

d(k+1)

L(fwk),a) = L™ + Op(n CI-1=+2) ), (3.1)

» The bigger the k , the faster the rate (can be faster than 1/vn) d(r41)
+  Under Assumption D.2+D.4, the optimal rate [1] is hypothesized to be Op(n~ #++1d-2 )
* Qurrate has an extra (d — 1)k term in the denominator

d(x+1) d(rk+1)
n 2d—-1)(k+2) —= 1 (d—-1)k+dr+4d—2
) K+1
: : : K k+3+d : :
* |n another work [2], the rate from plug-in kernel estimate |s( p(n ) , which is slower than

ours
[1rAudlersimilabres utks dornily Miclassitiersatmnder eress<entrapyts, 2007.

[2] Kohler and Krzyzak. On the rate of convergence of local averaging plug-in classification rules under a margin condition. IEEE Transactions on Information Theory,
2007.



CAR-NN: Convergence Rate in the Separable Case

Separable case with positive margin, super fast convergence rate

Theorem 3.2 (Generalization error in the separable case). Suppose Assumptions D.1, D.3, and D.5
hold. Let 1 = o(1). There exist positive constants C;, C5 such that the Imsclasmﬁcatmn rate 1s 0%
with probability at least 1 — § — C'; exp(—Csn), and § can be arbitrarily small? by enlarging the
neural network’s width.

Lemma 3.5 (Tsybakov’s noise condition under Gaussian noises). Let the margin be 2y > 0, the
noise be N (0, v*I;). Then there exist some constants 7", C' > 0 such that

Px (120,(X) — 1| < t) < (Cv?/7) exp(—7*/(2v%))t,Vt € (0, T).

Theorem 3.6 (Exponential convergence rate). Suppose the classes are separable with margin 2+ > 0.
No matter how complicated €2, U (), are, the excess risk of the overparameterized neural network

classifier satisfying Assumptions D.1 and D.4 has the rate Op(e —ny/ 7)



CAR-NN: Label Coding for Multi-Class

Square loss is not inferior to cross entropy, could be even better!

Lo Dataset #classes k M
Table 7: Vision results, accuracy MRPC 2 E
rain with {rain with SST-2 2 = B
Model — square loss (%) cross-entropy (%) QNLI 3 1 1
TCNN (Bai et al. ] 2018) MNIST (acc.) 977 977 Qb = T
W-Resnet Céagnrm ko & Komodakis!/2016) CIFAR-10 (acc.) 05.9 096.3 %lﬂll; {E’EEij ;g : 115
~ ResNet-50 ImageNet (acc.) 76.2 76.1 W'E%J } 52 1 15
(He et al.,|2016) ImageNet (Top-5 acc.) 93.0 93.0 [ibrisneech 1000 15 30
— EicientNel ImageNet (acc.) 74.6 77.0 MHIIJSB% 10 1
4 12 | a0 N e g .
(Tan & Le,2019) ImageNet (Top-35 acc.) 92.7 93.3 CIFAR-10 10 1
ImageNet 1000 15 30

A trick for multi-class classification

2, C
=5 (U@ -1+ 3 f:(tr)ﬂ) = L= k(@) - MP+ Y fil@)?

Why square loss struggles when the number of classes is large?

Hui, L., & Belkin, M. Evaluation of neural architectures trained with square loss vs cross-entropy in classification tasks. ICLR
2021.



CAR-NN: Modified Label Coding for Multi-Class

Modify label encoding from one-hot 2 simplex

Proposition 3.7 (Conditional probability). Let f* :  — R® minimize the mean square error
ix (f*(X) — v,)?, where v, is the simplex coding vector of label y. Then

nk(z) :=P(y = k|lz) = ((K — 1) f*(x) " v + 1) /K. (3.2)

Experiments: ResNet-18 on CIFAR-10 +0.5%, ResNet-50 onCIFAR-100 +6%

Coincides with Supervised Contrastive Learning (Khosla, Prannay, et al. ):

Dataset SIMCLR|[ ] Cross-Entropy Max-Margin [ *'] SupCon
CIFARI10 93.6 05.0 02.4 96.0
CIFART00 70.7 733 70.5 76.5
ImageNet 70.2 78.2 78.0 78.7

Table 2: Top-1 classification accuracy on ResNet-50 [| '] for various datasets. We compare cross-entropy
training, unsupervised representation learning (SimCLR [°]), max-margin classifiers [° '] and SupCon (ours).
We re-implemented and tuned hyperparameters for all baseline numbers except margin classifiers where we
report published results. Note that the CIFAR-10 and CIFAR-100 results are from our PyTorch implementation
and ImageNet from our TensorFlow implementation.



CAR-NN: Robustness in the Separable Case

When separable with positive margin, square loss has (adversarial) robustness guarantee

Measurement: size of the empirical margin

“gibbon”

0. 3% confidence

Theorem 3.3 (Robustness in the separable case). Suppose the assumptions of Theorem 3.2

are satisfied. Let pu o(1). Then there exist positive constants ', C,C5 such that
Milgep, 2'e0,u0. || — ||, > C, and the misclassification rate is 0% with probability at least
1 — 6 — C1 exp(—Csyn) for all n, where Dy is the decision boundary, and ¢ is as in Theorem 3.2.

* The GD implicit bias under CE is maximize training margin
* The margin in our theorem is on the population level

Lyu, Kaifeng, and Jian Li. "Gradient Descent Maximizes the Margin of Homogeneous Neural Networks." ICLR 2019.



CAR-NN: Numerical Experiments - Accuracy and Robustness

Table 1: Test accuracy on CIFAR datasets. Average accuracy larger than O but less than 0.1 1s denoted
as 0* without standard deviation.

PGD-100 (l-strength) AutoAttack (l-strength)
Dataset Network Loss | Clean acc % 37255 1/255 37955 7355 17355 S
ResNet-18 CE | 95.15(0.11) 8.81 (1.61) | 0.65(0.24) 0 2.74 (0.09) 0 0
CIFAR-10 SL | 95.04 (0.07) | 30.53(0.92) | 6.64 (0.67) | 0.86 (0.24) | 4.10 (0.50) 0* 0
WRN-16-10 CE | 93.94 (0.16) 1.04 (0.10) 0 0 0.33 (0.06) 0 0
SL | 95.02 (0.11) | 37.47 (0.61) | 23.16 (1.28) | 7.88 (0.72) | 5.37 (0.50) 0* 0
ResNet-50 CE | 79.82 (0.14) 2.31 (0.07) 0* 0 0.99 (0.10) 0* 0
CIFAR-100 SL | 78.91(0.14) | 13.76 (1.30) | 4.63 (1.20) | 1.21 (0.80) | 3.67 (0.60) | 0.16 (0.05) 0
WRN-16-10 CE | 77.89(0.21) 0.83 (0.07) 0* 0 0.42 (0.07) 0 0
SL | 79.65 (0.15) 6.48 (0.40) 0.42 (0.04) 0" 2.73 (0.20) 0* 0

Performance on CIFAR-10 dataset for ResNet-18
under standard PGD adversarial training.

Loss | Acc (%) | PGD steps | Strength(/..) | AutoAttack
CE 86.87 3 8/255 37.08
84.50 7 8/255 4]1.88
q[ 87.31 3 8/255 40.46
84.52 7 8/255 44.76

g -litesk)
o 1(test)
e -litrain)
o 1({train)

sguare loss(p = 0.1): test accuracy 99.9%

cross entropy(y = 0.01): test accuracy 99.9%
- DR

cross entropyig = 0): test accuracy 99.5%
‘;'-"-"-"_.-I

Frobability of class label = 1



CAR-NN: Model Calibration

Square loss is better-calibrated in theory and in experiments

Measurement: expected calibration error, or |In — Nll«

Theorem 3.4 (Calibration error). Suppose Assumptions D.1-D.4 are fulfilled. Let ;1 < n2a-1, Then
musnroom

' , . —1/(4d—2
|(fw k), +1)/2 =1, =Op(n="/1"2), =
- mushroom
jelly fungus
gill fungus
. dead-man's-fingers
Experiments: 9
CIFAR-10 + ResNet-18 + CE CIFAR-10 + ResNet-18 + SL CIFAR-100 + ResNet-50 + CE CIFAR-100 + ResNet-50 + SL

¥ S o S : Square Loss:
n=(ty+1)/2

L

1.4

Gag
N Outputs

.84 1.8 4 0.8 4 0.8 1

0.8 0.8 4 0.8 0.6

Cross Entropy:
7F=-ew/(1+ elw)

0.4 0. 0.4 0.4

0.2 0.2 4 0.2

r..r
0.2 4
by
L
-

e
0.0 T 0.0 T ! 0.0 0.0
.4 a.3 ihd 0.8 0.8 1.0 0.9 a3 0.4 0 08 1.0 0.0 0. 0.4 i (i} 1 il .2 0.4 a o8 1.8

Confidence Confidence Co hfide nce Confidence
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» Understanding Square Loss in Training Overparameterized Neural Network Classifiers, NeurlPS 2022 Spotlight, with Wenjia Wang, Jun Wang, Zhenguo Li
* Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary, arXiv, with Ruiqi Liu, Zuofeng Shang, Guang Cheng

« Exact Count of Boundary Pieces of RelLU Classifiers:Towards the Proper Complexity Measure for Classification, UAI 2023, with Pawel Piwek, Adam Klukowski



CAD-NN: Recap

(CAD) On the Decision Boundary:
H(e, §,dp) < Aye™? Ve > 0,

' DNN classifiers |

i Sub-optimal k
Under the smooth boundary fragment assumption w.r.t k
\

with smoothness 8
B(k+1)

B(x+1) 3 B(k+2)+(d—1)(x+1)
| B(k+2)+(d—1)k 0 Iog M i
O F] [

Smooth Boundary Fragment: Function as boundary

Ford > 2,letx_4; = (1, -+ ,x4_1). The smooth boundary fragment setting assumes the optimal set G* to
have the form

Gy :={x €R*: f*(x_q) — 24 >0, f* € H(d, )} (2.2)

Other ways: By RelLU network

T. Hu, Z. Shang, G. Cheng, Sharp Rate of Convergence for Deep Neural Network Classifiers Under the Teacher-Student Setting




CAD-NN: Source of Sub-optimality

t pP(x) —q(x)
Inconsistency of k along the decision boundary
Decomposition of the excess risk:
L
excess risk = (approx error)'t1/% 4+ (stochastic error) ' «+2 A B e

(N) There exists constants ¢, 7" > 0 and x € [0, co] such that forany 0 < ¢ < T,

Q({zx: |p(x) — q(x)| < t}) < ct”.

(NT) There exist constants ¢;,7" > 0 and x € [0, oo such that for any 0 < ¢ < T,
Q{z € G: |p(x) — q(z)| £ t}) = rt”

holds for any positive-measure set G C X containing the decision boundary, i.e., 0G™ N G° is not empty.

Lemma 3.1. (Informal) Under assumptions (N) and the smooth boundary fragment assumption (2.2), if we

further assume (NT), then the empirical 0-1 loss minimizer within a ReLU DNN family with proper size
: _ i B B(xk41)
achieves the optimal 0-1 loss excess risk convergence rate of n A(=+2)+@-1)x

Matches the lower bound!



CAD-NN: Localized Analysis

Px, (x2) = qx, (x2)

Localized Tsybakov’s noise condition

Ma_y(t) = P(@-a, f*(2-a) +1)) — a((@-, f*(@-a) + )] / -

i
K(x) =sup{k > 0: lim Ma (1)

X2
- t—0 ‘t|1/k > 0}

X1

2D Example: Let x € [0,1]? be uniformly distributed, i.e., p(x) + g(x) = 2.

Decision boundar: x. = f*(x.) =2 cos (Ary.) + % Let d(x) = g (x, — f*(x7)), which ranges from -1 to 1.

on(x) — 1 = sign(8(z)) - §(x)* @
By setting (@) B -4 will allow us to specify K(x) freely.

1.0 -

k

| =
o

0.0 0.2 0.4 0.6 0.8 1.0



CAD-NN: Localized Analysis

Px, (x3) — qx, (x2)

Localized Tsybakov’s noise condition /
(X1, Xz
Mg _,(t) := [p((X—q, [F(®-a) + 1)) — q((x—q, " (X-q) + 1)), /
. Mmg(t
K(x) =sup{k > 0: %13{1} W;|1(/k) > 0} .

(M1) There exists ¢g > 0 small enough and a constant 0 < (', < oo such that for all x € 0G™ and any

0 <t < ep, )
1 Mg (t
< i 30
Cy = /K@ = G
Lemma 3.3. Denote k=~ = infzecoe K(x) and K = supgecgc- K (). Then condition (M1) implies that

(N) holds with kK = x~ and (N™") holds with k = k.

Theorem 3.4. Under the smooth boundary fragments setting (2.2) with smoothness 3. Assume condition

(M1) and let k~ = inf,cyc- K (a). For any function space F, the 0-1 loss excess risk has the following
lower bound,

B(x +1)

. o~ 1 \ B(e—42)4(d-1)r—
inf sup E[E(f,G")] 2 () .
fEF G*€G} n




CAD-NN: Localized Analysis

Localized Convergence Analysis

Theorem 3.5. Under assumption (M1), further assume that for some j_4 € Jys, v~ < K(x) < k™ for all
x e Dy .. Let Fy, be aReLU DNN family' with size in the order of

kT (K~ 41)(d—1)/2 9
N Ln ~ 1 (r~+2)(sT+1)8+(d—1)rT (k~ +1) ]{jg (n)

Let the empirical O-1 loss minimizer be

.ﬁ,j_d — argrgin By LTk (3.1)
feF,

Then the 0-1 loss excess risk satisfies

(r—4+1)8
sup "‘:(Rj_d(ﬁhj—d) — Rj_d(G*)) — 5 (n, (R~ +2)/ i-l-(i-l-:ll—_i)'fdl}ﬂ"‘) y

G+€G;;

~ . + e : |
where O(-) hides the log(n) terms. If k" = k~, optimal rate!
If Kk = o, recovers existing fast rate



CAD-NN: Divide-and-Conquer

Global Convergence Analysis

(M2) K (x) is a-Holder continuous for some 0 < o < 1, i.e. there exists constant C'x such that for any
L1,La € ols",
K(x1) — K(22)| < Ck|le1 — 2|3

Theorem 3.9. Under the smooth boundary fragments setting (2.2), assume conditions (M1,M2). Denote

K~ = infgepo,1e K(x), kT = SUPgc(o,1)2 K (). Let Fr, be a ReLU DNN family with proper architectures
specified in Section 3.3 and size constraint

kT (d—1)/2
N, L., =0 | n («T+28+d-1)s* *hjgd_{_l(n) ,

Then, with probability tending to one, the empirical 0-1 loss minimizer within F,, satisfies

i ~ (™ +1)8
inf sup E(R(fn,) — R(G")) =0 (?’1 fh+21ﬁ:fd1?'h) :
fn€Fn G*€G}



CAD-NN: Curse-of-Dimensionality

Compositional Smoothness Structure: Effective smoothness 3* and effective dimension d*

fﬁi‘t — hg O hq—l O...0 h;l O ’1{]

Theorem 4.2. Under the compositional smoothness setting (4.1), assume condition (M1,M2) and denote

k™ = infpep e K(x), kT = SUPgef01]¢ K (). Let £, be a ReLU DNN family with proper architectures
and size constraint L = log(n),

kT d* kT d*
N:: — T (kT +2)8% fd* kT lﬂgd_l(n)l S; = 7 (kT 42)B*+d*rT lﬂgd(n)

n—0od

Then, with probability > 1, the empirical O-1 loss minimizer within /,, satisfies

o~ e (e~ 4+1)8*
inf sup E(R(f,) — R(C*)) =0 (n £ﬂ+31;+ﬂd*> .
fn€Fy C*eCd*,5)
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Recall the 2D example, where k governs the inconsistency.
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CAD-NN: Boundary Complexity

In learning theory, the model complexity (how large is the model) is of critical importance, especially for
model generalization.

[ J regularize { J ensure { J

However, for classification, existing regularizations may be insufficient or irrelevant.

In classification, to achieve good generalization, the complexity to control:

4 N : 4 )

\ J

* The boundary complexity measurement is far less explored, classical notions e.g., covering humber,
may be inadequate for deep learning.

» Given a boundary complexity, regularizing it during neural network training can be challenging.
Adversarial training can be thought of as a regularization for boundary complexity



CAD-NN: Boundary Complexity

A (proof-of-concept) step towards this underexplored direction

Consider RelLU neural network, where the decision boundary is piecewise linear!

Boundary complexity can be conveniently characterized by the #Boundary (hnumber of linear pieces).

Pros:

« Well-defined

* Intuitive

« Synergy with #Total (total number of linear pieces)

Cons:

« Over-simplified

- Not easy to calculate



CAD-NN: Boundary Complexity

A (proof-of-concept) step towards this underexplored direction: We propose a method to explicitly
count the number of boundary pieces, with the help of Tropical Geometry.
Two take home messages:

- Boundary complexity is different from functional complexity

1000

= #Boundary . = fBoundary &0 - == #Boundary
900 4 —— #Total/5 €0 — #Total/5 — #otal/5
w— F-norm Fnorm 220 Fnorm
800 4 00 1
0 -
700 =
{‘: - ,J E

600 - " \\.

500
45
m .
3:{"_ | \——\___\—
E‘DEI A ﬁj J
400 - 0 1 %0 - S "
/4 e |
200

300 100 4

200

|teration Iteration teration

- Boundary complexity can have negative correlation with Classification Robustness

#Boundary #Total F-norm Acc% R(0.02)
Initial 90 (61) 2432 (179) 20 (0.71) 30.2 (1.2) -
CE 377 (31) 1915 (207) 283 (11) _ 93.60 (1.8) 943 (22)

Noisy | 272(33) 1493 (114)  322(17)  99.15(0.56)  98.1 (0.51)
Adv 259 (21) 1241 (135) 356(19)  99.35(0.38)  98.9 (0.36)




Summary

" Classification |
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Statistics has a lot more to offer for theoretical understanding of deep learning.



